Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm
نویسندگان
چکیده
We introduce a generalization of the Robinson-Schensted-Knuth algorithm to composition tableaux involving an arbitrary permutation. If the permutation is the identity our construction reduces to Mason’s original composition Robinson-Schensted-Knuth algorithm. In particular we develop an analogue of Schensted insertion in our more general setting, and use this to obtain new decompositions of the Schur function into nonsymmetric elements (which become Demazure atoms when the permutation is the identity). Other applications include Pieri rules for multiplying these generalized Demazure atoms by complete homogeneous symmetric functions or elementary symmetric functions, a generalization of Knuth’s correspondence between matrices of nonnegative integers and pairs of tableaux, and a version of evacuation for arbitrary permutations.
منابع مشابه
A Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm
We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...
متن کاملComment on ‘a Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm’
We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...
متن کاملNonsymmetric Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm
We exhibit a weight-preserving bijection between semi-standard Young tableaux and skyline augmented fillings to provide the first combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for skyline augmented fillings. We also prove that ...
متن کاملEvacuation and a geometric construction for Fibonacci tableaux
Tableaux have long been used to study combinatorial properties of permutations and multiset permutations. Discovered independently by Robinson and Schensted and generalized by Knuth, the Robinson-Schensted correspondence has provided a fundamental tool for relating permutations to tableaux. In 1963, Schützenberger defined a process called evacuation on standard tableaux which gives a relationsh...
متن کاملFactorization of the Robinson-Schensted-Knuth correspondence
In [4], a bijection between collections of reduced factorizations of elements of the symmetric group was described. Initially, this bijection was used to show the Schur positivity of the Stanley symmetric functions. Further investigations have revealed that our bijection has strong connections to other more familiar combinatorial algorithms. In this paper we will show how the Robinson-Schensted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011